romcomma.user.sample.GaussianNoise§

class GaussianNoise(N, variance)[source]§

Bases: object

Sample multivariate, zero-mean Gaussian noise.

Parameters:
  • N (int) –

  • variance (NP.MatrixLike) –

__init__(N, variance)[source]§

Generate N samples of L-dimensional Gaussian noise, sampled from \(\mathsf{N}[0,variance]\).

Parameters:
  • N (int) – Number of samples (rows).

  • variance (int | float | Sequence[int | float] | ndarray | Sequence[int | float | Sequence[int | float] | ndarray]) – (L,L) covariance matrix for homoskedastic noise.

Methods

__init__(N, variance)

Generate N samples of L-dimensional Gaussian noise, sampled from \(\mathsf{N}[0,variance]\).

Attributes

variance

class Variance(L, magnitude, is_covariant=False, is_determined=True)[source]§

Bases: object

An artificially generated (co)variance matrix for GaussianNoise, with a useful labelling scheme.

Parameters:
  • L (int) –

  • magnitude (float) –

  • is_covariant (bool) –

  • is_determined (bool) –

property matrix: ndarray§

Variance as an (L,L) covariance matrix, suitable for constructing GaussianNoise.

property meta: Dict[str, Any]§

Meta data for providing to data.storage. This matches the initials in self.__format__().