romcomma.user.sample.GaussianNoise§
- class GaussianNoise(N, variance)[source]§
Bases:
object
Sample multivariate, zero-mean Gaussian noise.
- Parameters:
N (int) –
variance (NP.MatrixLike) –
- __init__(N, variance)[source]§
Generate N samples of L-dimensional Gaussian noise, sampled from \(\mathsf{N}[0,variance]\).
- Parameters:
N (int) – Number of samples (rows).
variance (int | float | Sequence[int | float] | ndarray | Sequence[int | float | Sequence[int | float] | ndarray]) – (L,L) covariance matrix for homoskedastic noise.
Methods
__init__
(N, variance)Generate N samples of L-dimensional Gaussian noise, sampled from \(\mathsf{N}[0,variance]\).
Attributes
variance
- class Variance(L, magnitude, is_covariant=False, is_determined=True)[source]§
Bases:
object
An artificially generated (co)variance matrix for GaussianNoise, with a useful labelling scheme.
- Parameters:
L (int) –
magnitude (float) –
is_covariant (bool) –
is_determined (bool) –
- property matrix: ndarray§
Variance as an (L,L) covariance matrix, suitable for constructing GaussianNoise.
- property meta: Dict[str, Any]§
Meta data for providing to
data.storage
. This matches the initials inself.__format__()
.